Problem 5077. Find all triplets (x, y, z) of real numbers such that

$$
\left\{\begin{array}{l}
x y(x+y-z)=3 \\
y z(y+z-x)=1 \\
z x(z+x-y)=1
\end{array}\right.
$$

Proposed by Isabel Iriberri Díaz and José Luis Díaz-Barrero, Barcelona, Spain Solution by Ercole Suppa, Teramo, Italy

From the second and third equation it follows that

$$
y z(y+z)=z x(z+x) \quad \Longleftrightarrow \quad(x-y)(x+y+z)=0
$$

If $x+y+z=0$ the first two equations yield $-2 x y z=3$ and $-x y z=1$ which is impossible.

If $x=y$ then the system rewrites as

$$
\left\{\begin{array}{l}
x^{2}(2 x-z)=3 \\
z^{2} y=1 \\
z^{2} x=1
\end{array}\right.
$$

Thus $x=\frac{1}{z^{2}}$ and

$$
\begin{gathered}
\frac{1}{z^{4}}\left(\frac{2}{z^{2}}-z\right)=3 \quad \Rightarrow \\
3 z^{6}-z^{3}-2=0 \quad \Rightarrow \quad z=-1, \quad z=\sqrt[3]{\frac{2}{3}}
\end{gathered}
$$

Therefore the required triplets are

$$
(1,1,-1) \quad\left(\sqrt[3]{\frac{9}{4}}, \sqrt[3]{\frac{9}{4}}, \sqrt[3]{\frac{2}{3}}\right)
$$

